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Executive Summary 

The international system is at an artificial intelligence fulcrum point. 
Compared to humans, AI is often faster, fearless, and efficient. National 
security agencies and militaries have been quick to explore the adoption of 
AI as a new tool to improve their security and effectiveness. AI, however, is 
imperfect. If given control of critical national security systems such as lethal 
autonomous weapons, buggy, poorly tested, or unethically designed AI 
could cause great harm and undermine bedrock global norms such as the 
law of war. To balance the potential harms and benefits of AI, international 
AI arms control regulations may be necessary.  

Proposed regulatory paths forward, however, are diverse. Potential solutions 
include calls for AI design standards to ensure system safety, bans on more 
ethically questionable AI applications, such as lethal autonomous weapon 
systems, and limitations on the types of decisions AI can make, such as the 
decision to use force. Regardless of the chosen regulatory scheme, however, 
there is a need to verify an actor’s compliance with regulation. AI verification 
gives teeth to AI regulation.  

This report defines “AI Verification” as the process of determining whether 
countries’ AI and AI systems comply with treaty obligations. “AI Verification 
Mechanisms” are tools that ensure regulatory compliance by discouraging or 
detecting the illicit use of AI by a system or illicit AI control over a system. 

Despite the importance of AI verification, few practical verification 
mechanisms have been proposed to support most regulation in consideration. 
Without proper verification mechanisms, AI arms control will languish. To this 
end, this report seeks to jumpstart the regulatory conversation by proposing 
mechanisms of AI verification to support AI arms control. 

Due to the breadth of AI and AI arms control policy goals, many approaches 
to AI verification exist. It is well beyond the scope of this report to focus on all 
possible options. For the sake of brevity, this report addresses the subcase of 
verifying whether an AI exists in a system and if so, what functions that AI 
could command. This report also focuses on mechanical systems, such as 
military drones, as the target of regulation and verification mechanisms. This 
reflects the focus of a wide range of regulatory proposals and the policy 
goals of many organizations fighting for AI arms control. In sum, this report 
concentrates on verification mechanisms that support many of the most 
popular AI arms control policy goals. Naturally, other approaches exist and 
should be studied further, however; they are beyond the scope of this initial 
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report on the subject. To these ends, this report presents several novel 
verification mechanisms including: 

System Inspection Mechanisms: Mechanisms to verify, through third party 
inspection, whether any AI exists in a given system and whether that AI could 
control regulated functions: 

• Verification Zone Inspections: An inspection methodology that uses 
limited-scope software inspections to verify that any AI in a system 
cannot control certain functions. The subsystems that AI must not 
control, for example, subsystems controlling the use of force, are 
designated as “verification zones.” If these select verification zones 
can be verified as free from AI control, the system as a whole is 
compliant. This limited inspection scope reduces the complexity of 
system inspections, protects subsystems irrelevant to AI regulation, 
and renders inspections less intrusive.  

• Hardware Inspections: The existence of AI in subsystems and its 
control over certain functions can be verified by examining whether 
AI chips exist and what subsystems they control.  

Sustained Verification Mechanisms: These are tools that can be used to 
verify a system remains compliant after an initial inspection: 

• Preserving Compliant Code with Anti-Tamper Techniques: These 
techniques protect system software from post-inspection tampering 
that may alter what AI can control. Methods chosen to illustrate such 
techniques include cryptographic hashing of code and code 
obfuscation. Cryptographically hashed system software also provides 
a record of expected system design for inspectors that can be used to 
monitor system software compliance long term. 

• Continuous Verification through Van Eck Radiation Analysis: 
Verified systems can be affixed with a Van Eck radiation monitoring 
mechanism that can be used to monitor the radiation the system 
produces when code is run. Aberrations detected in this radiation 
could indicate non-compliant manipulation.  

This report introduces and explains why these mechanisms have potential to 
support an AI verification regime. However, further research is needed to fully 
assess their technical viability and whether they can be implemented in an 
operationally practical manner.  
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Introduction 

Artificial intelligence has emerged as one of the most notable new national 
security technologies. While diverse in form and function, the common thread 
that unites the constellation of AI technologies is the unique power to grant 
autonomy and beyond-human insight to a range of systems and processes. 
The national security benefits of AI are obvious. One can easily imagine, and 
in many cases already see, the powerful new intelligence tools and military 
capabilities driven by AI. In the right hands, AI systems promise invaluable 
security benefits; in the wrong hands, they could be a grave threat. If given 
control of critical national security systems such as lethal autonomous 
weapons, buggy, poorly tested, or unethically designed AI could cause great 
harm and undermine bedrock global norms such as the law of war. Few 
argue AI systems be left unconstrained. To balance the potential harms and 
benefits of AI, international AI arms control regulations may be necessary.  

If used, AI systems must be safe, adhere to the law, and have an overall net 
benefit. To these commonly accepted ends, various policy goals and 
regulations have been proposed to delimit acceptable design and use of AI 
systems under international law. Call it “AI arms control.” Discourse, 
however, has sputtered in part due to a lack of practical mechanisms to verify 
a system’s compliance with proposed international regulations.*

The standard national security term of art for ensuring compliance with arms 
control is “verification.” The United Nations Institute for Disarmament 
Research and other United Nations bodies define verification as “the 
collection, collation and analysis of information in order to make a judgement 
as to whether a party is complying with its obligations.1 To address a potential 
point of confusion, this same term is also used by computer scientists to 
describe the process of analyzing whether software behaves as expected. In 
this report, verification is used strictly in the national security sense. 

Without verification, international AI arms control lacks teeth. Effective AI 
arms control may continue to languish unless practical verification 
mechanisms are developed. This report seeks to jumpstart this discussion by 
proposing several novel AI verification mechanisms.  

  

 
* See Appendix A for a discussion of the difficulties that have plagued the development of 
effective AI verification techniques. 
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In this report, I define “AI Verification” as: 

The processes of determining whether countries’ AI and AI systems 
comply with treaty obligations. 

I define “AI Verification Mechanisms” as: 

The set of mechanisms that ensure regulatory compliance by discouraging 
or detecting the illicit use of AI by a system or illicit AI control over a 
system. 

As mentioned, AI is a broad class of technologies. Regulators cannot expect 
a single silver bullet that can eliminate AI threats. Regulations will likely have 
to be technology specific, and verification will have to use a range of 
overlapping mechanisms. Recognizing the breadth of this topic and the 
unwieldy task of addressing all possible regulatory outcomes, this report 
strives not to answer all questions and solve every problem, but to get the 
process started.  

For the sake of brevity, this report specifically addresses the subcase of 
verifying whether an AI exists in a system or subsystem and if so, what 
functions that AI could command. I focus on mechanical systems, such as 
military drones, as the target of regulation and verification mechanisms. I refer 
to these mechanical systems as simply “systems” or “AI systems,” as 
appropriate, throughout. These choices reflect the emphasis of a wide range 
of regulatory proposals and the policy goals of many organizations lobbying 
for AI arms control. These include regulations mandating a human remains in 
the loop for use of force decisions, bans on certain systems that should not be 
AI controlled, and other regulatory proposals that seek to limit what can use 
AI and what AI can do. In sum, this report concentrates on verification 
mechanisms that support many of the most popular AI arms control policy 
goals. 

Naturally, there are many other routes that can be taken to regulate AI 
systems. Other possible options include safety and control demonstrations, 
rules regulating thoroughness of testing, and the ubiquitous implementation of 
certain norms. These and other options are beyond the scope of this report 
but should be considered further by interested policymakers and researchers.  

This report is intended for those policymakers and national security leaders 
who oversee AI systems (and systems that may one day become AI systems) 
or negotiate international policy to control their use. It is important to highlight 
that the mechanisms contained within this report represent a regulatory 
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starting point. Verification is technically complex, detailed, and politically 
difficult. Each mechanism should be passed to engineers for further research 
and to determine how it can be implemented in current or future state systems. 
This report is a list of possibilities, not answers. Policymakers must lean on 
their engineers and diplomats to rework and build on these ideas as needed 
to fit technical and political reality.  

A Note on Spoofing 

Many verification mechanisms could be subject to spoofing. In the context of 
AI verification, spoofing can be thought of as any method that an actor may 
use to deceive regulators and pursue illicit AI activities. It should be assumed 
that if an actor has the sufficient will and resources to cheat, they could 
develop spoofing methods to circumvent verification. This does not mean 
verification is fruitless, merely imperfect. Former Deputy Secretary of Defense 
Paul Nitze summarized these realities by stating the goal of effective 
verification is to make sure that:  

[I]f the other side moves beyond the limits of the Treaty in any militarily 
significant way, we would be able to detect such violation in time to 
respond effectively and thereby deny the other side the benefit of the 
violation.2 

A practical verification mechanism does not necessarily render spoofing 
impossible but seeks to catch spoofing in time to act. That said, this stated 
goal comes with the asterisk that even methods failing to guarantee this basic 
requirement can help. A second goal of verification is discouragement. If a 
verification mechanism instills a potential evader with a lack of “certainty 
about the likelihood of discovery,” it can still reduce harm.3  

This report is written with these goals in mind. Using these mechanisms, actors 
can better discourage and detect non-compliant activity, increase the cost of 
spoofing, and build trust in relevant regulations.  

Verification Inspection Mechanisms 

A common tool in pre-existing arms control verification mechanisms is third-
party system inspections to verify compliance with regulation. This first set of 
mechanisms are intended to support inspections as a tool for AI verification. 
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Verification Zones and Quarantine Zones 

Fundamental to inspections is the ability of third-party inspectors to quickly 
review a system and target the components that may make it non-compliant. 
As stated in the introduction, the goal of our verification mechanisms is to 
demonstrate whether a target system contains AI, and if so, whether certain 
critical functions of that system can be AI-controlled. This report defines a 
“critical function” loosely as those functions that regulators believe humans, 
rather than AI, should control. An example of such a function is the decision 
over the use of force, which many believe on ethical grounds should be 
reserved for humans.  

Unfortunately, conducting third-party inspections on military and national 
security systems is often not politically or technically easy and is often 
dismissed as too difficult to be worthwhile.4 Several factors complicate 
matters, including: 

• Complexity: The high complexity of AI algorithms, and the lengthy 
code baked into mechanical systems in general, often renders system 
code difficult to decipher or even unintelligible to humans. Complexity 
poses a challenge to inspections, a core element of many verification 
regimes; if inspectors cannot understand the technology they are 
inspecting, they cannot verify compliance with the regulations they 
seek to enforce. For AI systems, this complexity is often rooted in the 
machine learning process, a process by which AI writes and/or 
adjusts its own algorithms. AI-written code emphasizes functionality, 
not understanding, creating software not even the most talented 
engineers, let alone inspectors, can decipher.  

• Invisibility: AI algorithms run invisibly, leaving no obvious visible 
markers. Even the physical technologies that underpin AI are opaque. 
There is no standard set of inputs that “create AI.” Each AI system is 
the unique result of a concert of sensors, communications links, 
semiconductors, and other technologies. This invisibility makes it 
difficult to determine whether an AI or a human controls a system or a 
given function. Further, invisibility poses challenges to the detection of 
the use and production of AI, complicating efforts to find proof of AI 
control. 

• Secrecy: “AI Competition” creates an imperative for states, 
corporations, and other actors to tightly guard AI algorithms to ensure 
their advantage.5 The result has been intense secrecy and a strong 
disincentive for actors to openly identify which systems are AI systems, 
let alone expose their inner workings to verification inspectors. 
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The guiding paradigm of AI verification and inspections has traditionally 
assumed all systems should be treated and inspected as monoliths. This view 
is the root of many of the above challenges and has led many experts to 
contend that AI verification requires full access to a system’s software to 
establish the degree of AI control over it or its functions.6 Under this 
assumption, to concretely establish whether a lethal autonomous drone, for 
instance, allows AI to control the use of force, an inspector would require full 
access to all software and components contained within. Without full access, 
the inspector could never be certain if an uninspected part of a system hides 
an AI program that surreptitiously controls this critical function. Light must be 
shed on all code to know for certain the system is regulatorily compliant. This 
view makes inspection an all or nothing task. The noted secrecy demands of 
national security and proprietary information, however, make full system 
access politically unlikely. Even if full access is granted, a system-wide 
inspection would be complex and unwieldy, especially if inspectors must 
examine long and often indecipherable algorithms. Working under this 
monolithic systems paradigm, verification does indeed seem impossible. 

Thankfully, mechanical systems are not monoliths. The term “system” is no 
mistake. In reality, any mechanical system is not a monolith but a series of 
overlapping “subsystems” that usually coordinate under the orchestration of 
an operating system.7 Subsystems may include sensors, interfaces, 
communications, navigation, targeting, and firing, among others. Following 
this pattern of subdivision, each subsystem often uses its own algorithm(s); 
some use AI algorithms and others conventional algorithms. As such, a given 
system can contain no AI, one AI, or many AIs. When tasks are carried out, it 
is often the subsystems, and their controlling algorithms, that actually 
implement the overall system’s tasks. The operating system merely acts as the 
system director, allocating resources, easing collaboration, and ensuring 
smooth operation.  

It is unlikely that state actors will consent to inspections of a system’s operating 
system, as it is the centerpiece of any computing system and its design is 
usually highly secretive, especially in security critical national security systems. 
The easiest path forward appears to be accepting the operating system as a 
“black box.” That said, inspections still require a window into the overall 
system, a window that certain subsystems can provide.  

The recommendation of this report is to narrow inspection scope to only 
subsystems of interest to policy goals. This reduces the unwieldy complexity of 
inspections, balances the need for a certain level of system secrecy, and 
makes system inspections more palatable overall.  



Center for Security and Emerging Technology | 10 

Box 1: Apple iPhone Subsystems 

Apple iPhones include both conventional subsystems, such as the internet browser, 
and AI subsystems, such as Siri. While an iPhone contains an AI, Siri, it is just one 
application that works in concert with other applications to deliver the various 
functions and services expected from an iPhone. The iPhone’s operating system 
takes on executive coordination functions, coordinating, triggering, and providing 
resources for the overlapping subsystems to make sure they work in concert. In sum, 
the iPhone itself is not an AI. 

One can imagine Apple would be much more willing to allow inspectors to view 
the code for a rudimentary subsystem such as its flashlight application, or any one 
of its applications for that matter, rather than wholesale access to all of an iPhone’s 
code or its operating system.  

To formalize this mechanism, subsystems should be divided into one of two 
categories, “quarantine zones” and transparent “verification zones,” defined 
as: 

Quarantine zones: Subsystems that may contain the operating system, 
sensitive software, and other system functions intentionally obfuscated due to 
high secrecy demands. The inner workings of these zones should not matter 
for verification. Inspectors and policymakers should assume by default that AI 
exists within or controls these quarantine zones (even if it does not) until 
proven otherwise. 

Verification zones: These are subsystems that are intentionally made 
transparent. These zones can be physically or logically demarcated within the 
system through software, hardware, or both. These zones would allow 
inspectors access to the code or hardware of subsystems to determine from 
where they receive instructions. If controlling instructions can come from a 
quarantine zone, it should be assumed the functions in this zone could be AI-
controlled. If not, this suggests the subsystem(s) within cannot be controlled by 
an AI outside of a verification zone. Verification zones should surround 
subsystems involved in functions that should not be AI controlled or should not 
contain AI. To verify a human remains in the loop for use of force decisions, 
for instance, the weapons deployment system should be in a verification zone 
so an inspector can verify it is not AI controlled and can trace its instructions 
to a human source.   

When curtailing AI command and control, AI itself is often not the problem 
but rather the ability of AI to communicate with and control critical 
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subsystems. If these critical subsystems are made transparent, inspectors 
could analyze their code and the source of their commands to determine 
whether they could come from an AI algorithm. If instructions flow from a 
quarantine zone, an AI could be sending those instructions, and the 
subsystem cannot be verifiably AI-free. If the instructions flow only from a 
transparent source in a verification zone, then inspectors can verify the 
subsystems within are AI-free or verify what functions are AI controlled within 
the zone. This mechanism allows for verification that skirts the need to dig 
through the wholesale code of a system. Through this limited scope, 
verification by inspection likely grows more politically feasible and practically 
manageable, while remaining effective.  

Verification Checkpoints 

Separation of these zones can be implemented either physically or digitally. 
Physically, zones can be isolated from one another if they do not have the 
physical means to communicate. This is known as air-gapping.8 If the 
weapons system of a drone, for instance, is not wired to a subsystem 
containing illicit AI, the AI could not control a subsystem or its critical 
functions. 

Digitally, software could be designed to carefully control the flow of 
instructions and isolate certain software elements from others. I call these 
verification checkpoints. A verification checkpoint is an interface that stands 
between a given verification zone and all other subsystems. This checkpoint 
acts to sieve instructions. Using authentication and carefully managed intra-
system communications pipelines, a checkpoint could limit the instructions a 
verification zone can accept and from where it can accept instructions. If a 
quarantine zone subsystem is not authorized to communicate with a 
verification zone subsystem, an instruction checkpoint will halt those 
instructions. This protects the verification zone from AI within that quarantine 
zone that may be issuing those instructions. More critically, it demonstrates to 
an inspector that the AI in the quarantine zone cannot control functions in the 
verification zone.  

Forcing instructions through a checkpoint creates an intentional bottleneck. If 
all instructions flow through one point, this produces a centralized and 
convenient node to target all regulation and inspections. A checkpoint’s code 
could be relatively concise and likely technically simple enough for an 
inspector to easily understand. It is possible that these bottlenecks may 
negatively impact performance, a tradeoff made in favor of enhanced 
transparency. Policymakers must consider whether this trade-off is worth it.   
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As for the specific design of these checkpoints, there is a range of possibilities 
available. Such checkpoints could be designed to only allow instructions to 
flow into a verification zone from a select human source. Alternatively, 
checkpoints could be designed to give varying degrees of control to different 
sources, perhaps allowing for a benign AI in a quarantine zone, perhaps a 
navigation AI, to send a verification zone targeting coordinates while 
continuing to halt the quarantine zone from sending certain critical 
instructions, such as an instruction to “fire.” I call these mixed control 
checkpoints “centaur checkpoints.” 

Verification checkpoints reduce potentially unwieldy system inspections to 
targeted reviews that determine if the checkpoint could allow a quarantine 
zone, and therefore an AI, to send instructions to a regulated subsystem in a 
verification zone. By examining checkpoints, inspectors can identify the 
source of commands to verify if they come from a quarantine zone. If 
commands can be traced to a human-controlled verification zone, it can be 
determined that the subsystems beyond the checkpoint are AI-free.  

Policy Refinements and Assumptions 

Ideally, the quarantine/verification zone would be packaged with some 
additional policies. If possible, state actors would agree upon standard 
verification zones in their systems to open to inspectors. State actors must 
choose and define these zones carefully. To ensure an AI does not have 
control over critical decisions, states must agree what defines the subsystem 
that implements those decisions so that it can be clear what is regulated. In 
general, focus must be placed on subsystems of interest to regulation and 
those that contain enough information to verify the system will act according 
to policy goals. To build trust and respect secrecy demands, less is more. 
Policymakers should work with engineers to determine what quantity of 
subsystems would need to be verification zones in order to confidently verify 
a system.  

State actors may also wish to negotiate additional policies to ease inspection. 
Potential examples could include standard subsystem labels and physical 
markings to clarify component function and layout, designing subsystems to 
be easily accessed by an inspector, or mandating subsystem code be clearly 
described in code comments. This is by no means an exhaustive list; state 
actors should consider these and other policies that may help to ease 
inspections.   
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This concept also rests on several assumptions about state actor behavior. It 
can be assumed that if a state actor knows a given piece of hardware or 
software is in a verification zone, the state actor will intentionally exclude top-
secret technology from that zone’s design. Note that opening these zones to 
inspection does not eliminate the possibility of technical advantage, but 
merely redirects all actors to finding their technical edge in other non-
transparent subsystems. If engineers design systems with this in mind, a state 
actor should have few reservations about opening these zones to inspection. 
As addressed below in the “challenges” section, this may mean substantial 
system changes are required.  

Box 2: Inspecting Military Drones through Verification Zones 

Say an inspector wants to examine a military drone to verify it cannot use force 
without a human in the loop. To verify this, actors could agree on select verification 
zones in this system and open those zones to inspections. To do so, the inspector 
would require access to only those subsystems relating to the use of force, 
specifically the weapon deployment subsystem. This subsystem would therefore be 
a verification zone. Many subsystems, such as the drone’s fuel management 
system, are likely unnecessary to this task and would be declared as uninspectable 
quarantine zones.  

To inspect this verification zone, the inspector may examine the weapons 
deployment subsystems and determine if it contains AI. Further, the inspector must 
verify which other subsystems may control weapons deployment and whether those 
systems are AI-controlled. To do so, the inspector can trace from where inputs into 
the verification zone flow:  

• If instructions are fed to the weapons system from an uninspectable 
quarantine zone, a zone that could contain AI, the inspector cannot verify 
with certainty that AI does not control the use of force.  

• If instructions flow from a transparent verification zone that does not contain 
AI, then the inspector can verify that AI does not control the use of force.  

This method allows the inspector to verify compliance while balancing the need for 
secrecy and reducing the scope of inspection. 

Challenges 

As mentioned, it is highly likely that these mechanisms cannot be easily 
implemented using current system designs. Many systems, while modular to 
an extent, are still highly interconnected, and it may be that certain 
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subsystems cannot be easily subdivided from the rest to form these verification 
zones. Further, current systems aren’t designed with checkpoints in mind, and 
therefore this could hinder efficiency if instructions must be funneled through 
this intentional bottleneck. While a hindrance, this problem is not something 
that should halt research and policy negotiation. Historically, it has taken 
many parties to arms control treaties significant time and research to 
implement the changes required. For example, the United States is still 
working through the substantial changes required by the Chemical Weapons 
Convention it signed in 1997 with a goal of completing disarmament by 
2023.9 This demonstrates that just because arms control verification requires 
heavy lifting and time does not render it impossible, nor does it mean steps 
should not be taken. Verification and arms control problems are technical and 
require technical changes. Therefore, it is likely these changes must be 
gradually implemented over time as new national security and military 
systems are developed. 

Cybersecurity is another challenge. With greater transparency comes greater 
cyber risk. When considering this mechanism, state actors must consider the 
security of their systems and the benefits they may receive by sacrificing some 
system security. Arms control usually has some cost, and it could be that cost 
is cybersecurity. Policymakers must note, however, that often security in one 
domain can be improved through a small sacrifice of security in another. 
Weigh this balance carefully.  

A final challenge is one of state actor trust and motivation. Any arms control 
scheme that seeks to balance secrecy and transparency will encounter 
international resistance. Change is hard, especially when it costs time, 
money, and potential military advantage. States must be motivated to buy 
into the concept and must trust the technical decisions made throughout the 
process. Without motivation and trust, negotiations will fail.  

To surmount these challenges, policymakers should work with engineers to 
research which checkpoint designs and system architectures will best balance 
policy goals against any detriments to cybersecurity and processing speeds. 
To improve trust and build international buy-in, policymakers should 
collaborate on this research with international partners. Doing so will ensure 
designs reflect the state of the art, build trust in the science behind any 
proposed changes, and encourage buy-in from the outset of the development 
process.  
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Hardware Inspections 

If state actors wish to avoid software inspections and verify based only on 
hardware, they could do so by examining whether a given system, or 
subsystem, contains an AI chip. This mechanism can be implemented using 
the verification/quarantine zone model, restricting inspectors to only 
inspecting the hardware of subsystems relevant to their purpose. If a given 
subsystem is not powered locally by an AI chip and verifiably cordoned off 
from any external AI, it can be assumed the subsystem and its functions are 
not AI controlled. If the goal is to simply determine whether a system writ-
large is AI-free, this mechanism is ideal as its somewhat less intrusive nature 
than software inspections* may make it more politically feasible to inspect an 
entire system without risking the exposure of most of the system’s design 
secrets.  

The mix of chips that inspectors would look for in systems is diverse, ranging 
from general purpose Central Processing Units (CPUs) to so-called AI chips, 
which include Graphics Processing Units (GPUs), highly specialized 
Application-Specific Integrated Circuits (ASICs), and other AI optimizing 
processors and memory units.10 In the world of AI, these various chips fall into 
two buckets: those used for AI training, when the AI is in development, and 
those used during inference, when the AI is in use. For AI system verification 
purposes, it is the inference chips that matter most as those are the chips that 
power AI algorithms when AI systems are deployed.  

At present and into at least the short term, it seems likely these chips will be 
required for AI system inference and therefore a clear indicator of the use of 
AI by that system. McKinsey estimates that within five years, 70 percent of the 
chips in AI systems will be ASICS, a specific type of AI chip exclusively used 
by AI applications, replacing the CPU as the AI processor of choice.11 The 
takeaway is that within five years, most AI embedded systems could clearly 
be identified by their chipset.  

The reason for this shift, in brief, is that AI chips appear to offer many clear 
advantages. The use of these chips for AI processing and specifically AI 

 
* It is assumed that because the complexity and sensitive design details of hardware is often 
invisible to the naked eye an inspector could not easily steal or reveal substantial design 
secrets unless they had the time and resources to analyze the components in depth. 
Inspecting software, on the other hand, requires an inspector to read through the system’s 
code, revealing all the design secrets contained within. It is likely certain secrecy risks, 
however, are not accounted for in this report. Policymakers should work with engineers to 
verify what secrets may be put at risk through a hardware inspection. 
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inference largely derives from the special purpose features they provide for 
AI systems. These include (but are not limited to):  

1. Greater parallelism. To analyze data efficiently, AI algorithms often 
must take advantage of greater parallelism than traditional CPUs can 
offer. These algorithms need to subdivide their complex input data 
and analytic models into smaller pieces so that analysis can be done 
in parallel, rather than sequentially. This massively speeds up 
operations and allows for quicker analysis. 

2. Lower precision numbers: The operations AI algorithms perform 
often require fewer values after the decimal point in the numbers 
being calculated. These numbers are said to have “lower precision.” 
If a chip lowers the precision of the numbers being calculated, this 
increases the speed of each calculation, unlocking improved 
performance.12 

3. Faster memory access: AI has significant memory requirements. Fast 
memory allows an AI to think and act faster. AI chips facilitate this, 
often physically shortening the distance between processing and 
memory components to increase the speed of memory recall and, 
therefore, the speed of AI “thinking.”13 

4. Optimization for AI specific calculations: AI computations often 
involve a high volume of matrix multiplication. AI chips often optimize 
for this through such features as many parallel Multiply-Accumulate 
Circuits, which are special circuits that speed up this type of 
multiplication.14  

These features illustrate how AI chips can improve function in AI applications 
and why they may become an essential part of national security AI systems.  

As alluded to, inspections to verify the existence of AI in a system could be 
simple. All that is required is a physical examination of a system or subsystem 
to check if it contains AI chips. Verifying AI control over specific critical 
functions, such as an AI’s ability to use force, is also potentially possible from 
this “look and see” method. If a critical subsystem, such as the weapons 
deployment system, does not include an AI chip and is verifiably cordoned 
off or air-gapped from other subsystems, it is likely not AI controlled and 
therefore compliant.  

While potentially effective, this mechanism is blunt. It is likely best used as a 
“first pass” inspection to determine whether a system requires greater scrutiny. 
Additional, more invasive analysis could then follow.  
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Challenges 

This mechanism does not guarantee systems are entirely AI-free, as traditional 
CPUs can still run AI algorithms, albeit at an often slower pace. Furthermore, 
the utility of this mechanism could vary widely depending on system type. For 
lightweight applications, such as small drones, CPUs may be enough, and 
policymakers should account for this in their inspection policies. In this case, 
seeing that a system does not contain an AI chip is not enough for verification.  

However, for heavyweight applications, such as large drones and 
autonomous vehicles, the real time requirements of safety and time-critical 
functions require immensely fast processing to achieve real time action and 
reaction. This may require the faster AI-specific inference chips.15 This speed 
imperative is even more crucial to military systems where the inability to react 
in a timely manner could lead to strategic failure or dangerous lag. It can be 
assumed that if a military deploys a multimillion-dollar autonomous system, it 
will use the chipset best equipped to reap the value of that investment. If 
current trends hold, this means those systems will use AI chips. In the end, 
capability is what matters. If a CPU-driven autonomous system is not capable 
of the processing speeds needed to be a true threat, it may be of little concern 
to regulators and useless to its owners. Do note that current trends may 
change. Refinements in CPUs and efficiency gains from new AI design 
techniques could allow systems to run on CPUs. If this mechanism is used, 
policymakers must ensure implementation keeps pace with technology 
change.   

Another challenge is distinguishability. This mechanism depends on AI chips 
exhibiting some quality that allows an inspector to determine they are AI 
chips. Given the breadth of AI-specific chips, this will likely require a range of 
qualities that inspectors can use to determine the classification of a given chip. 
As such, policymakers should work with engineers to delineate what qualities 
can be used and ensure this process conforms to chip designs. 
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Sustained Verification 

A key challenge to verifying systems remain compliant with regulations post 
inspection is the ease with which system code can be altered. The inspection 
mechanisms above are certainly essential, especially for deterring non-
complaint activity. However, inspections only offer certainty in the very short 
term. Even if a system is found to be compliant, its software could be changed 
immediately after to embed it with AI or give an AI control of critical functions. 
Effective inspections and regulatory enforcement, therefore, require 
mechanisms to detect and deter such alterations. To craft a strong verification 
regime, policymakers should look to what I call “sustained verification 
mechanisms,” which help affirm previously inspected systems remain 
compliant long term. 

The following mechanisms are tailored to this purpose. 

Cryptographic Hashing 

One mechanism that can be used to protect system code from manipulation is 
anti-tamper (AT) software techniques. According to the Department of 
Defense, these methods render efforts to alter or exploit data and code “so 
time consuming, expensive, and difficult that even if the attempts were to 
become successful, the AT protected technology will have been updated and 
replaced by the next generation version.”16 For AI verification, anti-tamper 
software ideally can even “detect if [a] program has been altered,” and 
potentially rendered non-compliant.17 These methods promise to deter and 
detect rather than outright stop tampering. Therefore, policymakers should 
note that software tampering is still possible, despite the best efforts of anti-
tamper technology.  

Anti-tamper methods are diverse, often application-specific, and continually 
evolving. As such, this report does not address many existing methods, such 
as watermarking, which makes code difficult to remove without damaging the 
system or making changes, or encryption wrappers, which encrypt system 
code and only decrypt it when the system is in use.18 For the sake of 
illustration, I discuss two promising anti-tamper techniques—cryptographic 
hashing in this section and algorithm obfuscation in the next—and how they 
can be used for sustained AI verification. Interested policymakers and 
researchers are encouraged to research and consider other AT methods that 
could be appropriated for verification.  
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Cryptographic hashing is a tool that could support verification by producing 
for inspectors a privacy-preserving “record” of system code. This record can 
act as a tamper detection device, allowing tampering to be signaled upon 
subsequent inspections of the same system. 

Cryptographic hashing uses a mathematical function, known as a 
“cryptographic hash function,” which takes in any type of data—including 
text, audio, and computer code—then scrambles, condenses, and transforms 
that data into a resulting “hash,” a seemingly random sequence of characters 
of a certain length.19 For example, when the 39,808-word text of the Book of 
Genesis, King James Version, is fed through the SHA-256 hash function (a 
commonly used hash function), the entire text is transformed into: 
“675d773189394dcd4cc92d1b489f1e04cca2b4e734dccda7d7e06d0
aed181db8.”20 This resulting hash is an unintelligible scramble, dramatically 
condensed and altered from the text. 

This data transformation property is only the tip of the cryptographic hashing 
iceberg. Importantly, for a hash function to be a cryptographic hash function 
and useful for verification, it must have five key characteristics:  

1. Consistency: Input data will always produce the same hash when run 
through the same cryptographic hash function.  

2. Speed: The hash function is fast, producing output in a reasonable 
amount of time.  

3. Cannot be reverse-engineered: The resulting hash cannot be easily 
transformed back into the original input data that it represents.  

4. Cannot be easily duplicated: Practically speaking, no two data 
inputs should produce the same hash.  

5. The Avalanche Effect: Only a small alteration to the original input 
data will yield a dramatic “avalanche” of changes to the resulting 
hash. Small changes yield substantial differences. 

For sustained verification purposes these combined properties create a very 
powerful tool. Once an inspection is completed, an inspector can hash the 
entire code of a system, or even just the code of a verification zone, and store 
that hash as a “record” of what that code should be. To an inspector, the 
hash is the code. If inspectors have records of expected system code, this then 
allows them to identify and track system changes. If the same system’s code 
were to be hashed again in the future, the result should match the hash the 
inspector has on file. If it does not, this signals alterations have been made. 
Crucially, this tool is privacy preserving. Because a given hash cannot be 
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reverse-engineered to produce the code it represents, an inspector can save 
a record without putting state secrets at risk.  

It is notable that hashes do not need to be computed in person. This opens up 
the opportunity to use this tool not only for sustained verification, but 
continuous verification. To implement, a given system could be fitted with a 
theoretical “hashing device” that occasionally hashes the system’s code and 
broadcasts that hash to an observer. This would give the observer a window 
into the code’s fidelity over time and deter actors from making changes. 
Naturally, this concept would be somewhat invasive but would create a 
powerful verification tool.    

Challenges  

It is possible that, over time, certain cryptographic hashing functions may be 
broken, thereby compromising the integrity of this system. In the past, even 
hashing algorithms supported by reputable organizations such as the 
National Institute for Standards and Technology have contained 
compromising vulnerabilities.21 If a significant vulnerability is found, code 
could theoretically be altered without signaling tampering. Therefore, an 
actor could alter their system code in such a way that it produces the same 
hash as the original and evade detection. This could facilitate cheating.   

This scenario, however, is immensely improbable. The mathematics of the best 
hashing algorithms are such that even if an actor were to try and fool the 
function, the process would take so long (perhaps decades) that the effort is 
not worthwhile.22 The improbability of cracking existing top-tier hash functions 
is illustrated best by Bitcoin, the mechanics of which are built on 
cryptographic hashing. There exists an unparalleled monetary incentive to 
crack Bitcoin’s hash function, yet the combined efforts of the world’s hackers 
have failed thus far. Hashing is that robust. Still, if this method were 
implemented, policymakers should consider the probability of vulnerabilities 
and prepare appropriate contingencies. 

Algorithm Obfuscation 

The second anti-tamper technique I will discuss for the sake of illustration is 
algorithm obfuscation.  

Algorithm obfuscation is a method that “make[s] a computer program 
‘unintelligible’ while preserving its functionality.”23 Obfuscation is achieved by 
running code through an obfuscation algorithm, which intentionally scrambles 
the code to disguise its meaning. The resulting scrambled code is an 
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unintelligible “black box,” which can function exactly like the original code 
but cannot be read by engineers and, ideally, cannot be reverse-engineered 
to discover the unscrambled version. The difference between obfuscation and 
hashing is that hashing would produce a numeric representation of the code 
(which cannot be computed), while obfuscation produces new, unintelligible 
code (which can be computed) with the exact functions of the original code. 

For verification, obfuscated code would act in a similar manner to 
cryptographically hashed code. If code is truly obfuscated, outside parties 
and inspectors could potentially view a system’s code, and even record it, 
without compromising its specific implementation. Inspectors could keep a 
record of the entire system code, or just the code of a verification zone, and 
therefore a record of how that system should be configured. In subsequent 
inspections, inspectors could run a 1-to-1 comparison between past and 
present obfuscated code to quickly spot tampering. Unlike hashing, however, 
obfuscation allows inspectors to see code, not a hash, potentially eliminating 
the problem of cryptographic hash collisions.  

Challenges 

Code obfuscation is still a developing cybersecurity frontier, and much 
research is needed to produce robust obfuscation algorithms. According to 
the Defense Advanced Research Projects Agency (DARPA), the best current 
techniques only require about a day’s worth of effort to crack.24 That said, it is 
possible that adequate technology has been or will be developed. DARPA is 
currently developing what it calls “Safeware,” obfuscated software that 
cannot be reverse-engineered and is probably secure.25 While this project is 
a moonshot, if it, or any other related research, is successful and made 
internationally available, state actors could use algorithm obfuscation to 
ensure these systems are secure, tamper-proof, and help build trust in 
regulations. 

Even if robust obfuscation techniques are indeed developed, it is important to 
note that this method does reveal code and, with it, certain elements of code 
structure and function. Further, because this is usable code, it could be used to 
determine what functions a given system has, even if it cannot be determined 
how the system performs those functions. Additionally, one could still find 
vulnerabilities in obfuscated code even if the overall purpose of a given 
algorithm remains unclear. All in all, in its current state obfuscated code is 
likely a less secure method than cryptographic hashing. However, it still 
represents one potential tool in the anti-tamper toolbox that can be further 
refined through consultation with engineers.  
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Van Eck Radiation Analysis 

Van Eck radiation analysis is another sustained verification tool that can be 
used to continuously monitor system function and ensure it matches what was 
found during a system inspection. Van Eck radiation is the electromagnetic 
radiation computers and unshielded electronic devices emit when they 
process code. If intercepted, this radiation can be deconstructed to reveal a 
system’s functions and even the code it processes.26 Such potent information 
can be used to verify the consistency of the system’s code in the long term, 
creating a powerful verification tool.  

As with most verification tools, however, Van Eck radiation is not a silver 
bullet. While computer code can indeed be intercepted by analyzing Van 
Eck radiation, this code will be highly complex and often garbled. Computers 
are excellent multi-taskers and often process multiple algorithms in tandem, 
making it difficult to piece together coherent algorithms from a tangle of 
intercepted instructions. This quality rules out any ability to simply identify 
algorithms using Van Eck radiation. For this, Van Eck radiation analysis is far 
too blunt an instrument. 

To further complicate matters, the instructions Van Eck radiation would reveal 
are written in machine code, the strings of 1s and 0s that form the operating 
instructions for computers. Machine code instructions are often processor-
specific, meaning that if an analyst is unfamiliar with the processor running 
this machine code, they will not know how to correctly interpret the 
intercepted 1s and 0s. In sum, if the Van Eck radiation of a complex system 
such as a military drone were monitored, it is unlikely an observer could piece 
together what algorithms the system is running, let alone prove whether it 
contains AI or gives AI control over certain functions.  

At first glance, these two qualities may seem to rule out Van Eck radiation 
analysis as an effective verification tool. In reality, however, it is precisely Van 
Eck monitoring’s weaknesses that make this highly practical for AI verification. 
Van Eck radiation leaks just enough information about system code, without 
revealing the complex, tightly guarded secrets of the system’s algorithms.  

To use Van Eck radiation to sustain verification post-inspection, a system’s 
owner would need to consent to the installation of a theoretical “Van Eck 
radiation sensor” onto the system in such a way that it can detect the 
unshielded Van Eck emissions of the device. This sensor would need to be 
trained to recognize the typical radiation patterns given off by this system, 
creating a baseline system radiation profile. This profile would consist of a 
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“dictionary” of expected radiation patterns emitted when the system uses its 
existing code. Each time the sensor picks up a Van Eck emission, it would 
consult this dictionary to affirm that the emission matches the patterns 
expected of the system. If it detects a foreign pattern, be it from injected 
malware or intentional design changes by its owner, this indicates changes 
have been made to system code. The Van Eck radiation would then signal to 
inspectors that the system may no longer be compliant.  

To illustrate, if an inspector verifies a drone as AI-free, the inspector could 
then use a Van Eck monitoring device to measure the radiation patterns the 
drone’s code emits when its algorithms are run. If the drone’s radiation 
patterns later change, this would be detected. Inspectors could then re-
inspect the drone, determine the cause of the deviation, and establish whether 
the system remains compliant.  

The unique advantage of Van Eck radiation analysis over other sustained 
verification tools is its potential for minimally invasive monitoring. A theoretical 
Van Eck sensor would not need access to a system’s code to verify that code 
has been altered. Detecting system changes needn’t come at the expense of 
code secrecy. System monitoring can be done mostly externally (assuming 
the sensor can be installed without a radiation shield in its way) without 
reading a single line of code. This protects design secrets while guarding 
against illicit activity.  

This mechanism is scientifically grounded. Recent DARPA-funded research 
tested a nearly identical concept, albeit with the goal of detecting malware 
rather than changes to AI control of a system. The research found that illicitly 
injected malware could be detected in systems more than 99 percent of the 
time.27 If this same process is appropriated for AI detection, systems could be 
continuously monitored and non-compliant activity detected with certainty 
beyond a reasonable doubt.  

Challenges 

Van Eck radiation’s use in intelligence collection is noted for its difficulty. 
Challenges certainly remain, many of which must be tackled by engineers to 
determine the effectiveness of this method and the quality of information that 
can be collected. One such challenge is the known changes to emissions that 
result from integrated circuit wear and tear over time.28 Such changes would 
need to be studied, quantified, and their impact accounted for in any Van Eck 
radiation analysis system. Another challenge is the potential impact of 
different environmental conditions on Van Eck emissions. These may include 
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the impact of power lines, radar jamming equipment, and other stray 
electromagnetic fields. These influences would need to be accounted for, 
otherwise a system could signal changes every time it enters a foreign 
operating environment.  

The applicability of this measurement specifically to machine learning and 
deep learning models must also be studied in depth. One such challenge may 
be accounting for emissions changes resulting from the dynamic alterations a 
deep learning model may make on itself. Another could be accounting for a 
more diverse range of emissions created by the varied data these systems 
process.  

As mentioned, AI verification is a technical problem that needs technical 
solutions. Van Eck radiation analysis is a method that must be developed in 
consultation with engineers and specialists to ensure it provides robust results 
and accounts for a variety of implementation scenarios and challenges. Such 
challenges to verification development are not unheard of. Thankfully, in 
verification, half measures are acceptable. This mechanism does not need the 
precise accuracy to concretely determine whether a system was manipulated 
to be an effective tool. If it can detect potential manipulation with a certain 
level of uncertainty, this can still signal to observers that follow-up action may 
be required.  
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Conclusion  

AI verification is no easy task. The mechanisms discussed in this report offer 
potential solutions to some of the many problems that face AI systems. More 
work is required, however. If the goal of policymakers is to regulate AI, there 
are actions that can be taken today. Specifically:  

1. Verification Zone and Hardware Verification Architecture 
Research: Experts must develop and research system architecture that 
can be used to implement the verification zone and hardware 
verification concepts. Research should specifically identify what 
architectural options exist to cordon off and checkpoint the 
verification zones, the impact of these checkpoints on system 
performance and security, the information that can be gained or lost 
using these inspection mechanisms, and the effort it would take to 
implement these architectures in future and current state systems. 

2. Van Eck Radiation Capture and Analysis Research: Further 
research is needed to determine the quality of information that can be 
captured from the Van Eck radiation given off by systems during 
processing and the degree of certainty of system consistency that 
information provides. Additional research should focus on the 
feasibility of a “Van Eck radiation sensor” to be used for continuous 
verification. 

3. Coordination with International Partners: To build trust, researching, 
developing, and implementing these concepts cannot be done in a 
vacuum. Arms control requires international support, and trust requires 
transparency in the science. The United States should explore 
potential research partners to build support in these ideas, verify 
research, and foster trust in potential arms control agreements that 
may follow.  

By taking these steps and working with scientists, policymakers can move the 
AI arms control conversation forward. AI is at a fulcrum point, and 
international security depends on ensuring AI provides a net benefit. 
Policymakers must take it upon themselves to explore these ideas and build 
on this research so that robust and verifiable standards, norms, and 
regulations can be developed to constrain the misuse of AI systems and 
preserve future security.  
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