
AI Verification

AUTHOR
Matthew Mittelsteadt

FEBRUARY 2021

Mechanisms to Ensure AI Arms Control Compliance

CSET Issue Brief

Center for Security and Emerging Technology | 2

Executive Summary

The international system is at an artificial intelligence fulcrum point.
Compared to humans, AI is often faster, fearless, and efficient. National
security agencies and militaries have been quick to explore the adoption of
AI as a new tool to improve their security and effectiveness. AI, however, is
imperfect. If given control of critical national security systems such as lethal
autonomous weapons, buggy, poorly tested, or unethically designed AI
could cause great harm and undermine bedrock global norms such as the
law of war. To balance the potential harms and benefits of AI, international
AI arms control regulations may be necessary.

Proposed regulatory paths forward, however, are diverse. Potential solutions
include calls for AI design standards to ensure system safety, bans on more
ethically questionable AI applications, such as lethal autonomous weapon
systems, and limitations on the types of decisions AI can make, such as the
decision to use force. Regardless of the chosen regulatory scheme, however,
there is a need to verify an actor’s compliance with regulation. AI verification
gives teeth to AI regulation.

This report defines “AI Verification” as the process of determining whether
countries’ AI and AI systems comply with treaty obligations. “AI Verification
Mechanisms” are tools that ensure regulatory compliance by discouraging or
detecting the illicit use of AI by a system or illicit AI control over a system.

Despite the importance of AI verification, few practical verification
mechanisms have been proposed to support most regulation in consideration.
Without proper verification mechanisms, AI arms control will languish. To this
end, this report seeks to jumpstart the regulatory conversation by proposing
mechanisms of AI verification to support AI arms control.

Due to the breadth of AI and AI arms control policy goals, many approaches
to AI verification exist. It is well beyond the scope of this report to focus on all
possible options. For the sake of brevity, this report addresses the subcase of
verifying whether an AI exists in a system and if so, what functions that AI
could command. This report also focuses on mechanical systems, such as
military drones, as the target of regulation and verification mechanisms. This
reflects the focus of a wide range of regulatory proposals and the policy
goals of many organizations fighting for AI arms control. In sum, this report
concentrates on verification mechanisms that support many of the most
popular AI arms control policy goals. Naturally, other approaches exist and
should be studied further, however; they are beyond the scope of this initial

Center for Security and Emerging Technology | 3

report on the subject. To these ends, this report presents several novel
verification mechanisms including:

System Inspection Mechanisms: Mechanisms to verify, through third party
inspection, whether any AI exists in a given system and whether that AI could
control regulated functions:

• Verification Zone Inspections: An inspection methodology that uses
limited-scope software inspections to verify that any AI in a system
cannot control certain functions. The subsystems that AI must not
control, for example, subsystems controlling the use of force, are
designated as “verification zones.” If these select verification zones
can be verified as free from AI control, the system as a whole is
compliant. This limited inspection scope reduces the complexity of
system inspections, protects subsystems irrelevant to AI regulation,
and renders inspections less intrusive.

• Hardware Inspections: The existence of AI in subsystems and its
control over certain functions can be verified by examining whether
AI chips exist and what subsystems they control.

Sustained Verification Mechanisms: These are tools that can be used to
verify a system remains compliant after an initial inspection:

• Preserving Compliant Code with Anti-Tamper Techniques: These
techniques protect system software from post-inspection tampering
that may alter what AI can control. Methods chosen to illustrate such
techniques include cryptographic hashing of code and code
obfuscation. Cryptographically hashed system software also provides
a record of expected system design for inspectors that can be used to
monitor system software compliance long term.

• Continuous Verification through Van Eck Radiation Analysis:
Verified systems can be affixed with a Van Eck radiation monitoring
mechanism that can be used to monitor the radiation the system
produces when code is run. Aberrations detected in this radiation
could indicate non-compliant manipulation.

This report introduces and explains why these mechanisms have potential to
support an AI verification regime. However, further research is needed to fully
assess their technical viability and whether they can be implemented in an
operationally practical manner.

Center for Security and Emerging Technology | 4

Table of Contents

Executive Summary ... 2

Introduction .. 5

A Note on Spoofing .. 7

Verification Inspection Mechanisms ... 7

Verification Zones and Quarantine Zones .. 8
Verification Checkpoints ... 11
Policy Refinements and Assumptions .. 12
Challenges ... 13

Hardware Inspections .. 15
Challenges ... 17

Sustained Verification ... 18

Cryptographic Hashing ... 18
Challenges ... 20

Algorithm Obfuscation ... 20
Challenges ... 21

Van Eck Radiation Analysis ... 22
Challenges ... 23

Conclusion .. 25

Author .. 26

Acknowledgments .. 26

Endnotes .. 27

Center for Security and Emerging Technology | 5

Introduction

Artificial intelligence has emerged as one of the most notable new national
security technologies. While diverse in form and function, the common thread
that unites the constellation of AI technologies is the unique power to grant
autonomy and beyond-human insight to a range of systems and processes.
The national security benefits of AI are obvious. One can easily imagine, and
in many cases already see, the powerful new intelligence tools and military
capabilities driven by AI. In the right hands, AI systems promise invaluable
security benefits; in the wrong hands, they could be a grave threat. If given
control of critical national security systems such as lethal autonomous
weapons, buggy, poorly tested, or unethically designed AI could cause great
harm and undermine bedrock global norms such as the law of war. Few
argue AI systems be left unconstrained. To balance the potential harms and
benefits of AI, international AI arms control regulations may be necessary.

If used, AI systems must be safe, adhere to the law, and have an overall net
benefit. To these commonly accepted ends, various policy goals and
regulations have been proposed to delimit acceptable design and use of AI
systems under international law. Call it “AI arms control.” Discourse,
however, has sputtered in part due to a lack of practical mechanisms to verify
a system’s compliance with proposed international regulations.*

The standard national security term of art for ensuring compliance with arms
control is “verification.” The United Nations Institute for Disarmament
Research and other United Nations bodies define verification as “the
collection, collation and analysis of information in order to make a judgement
as to whether a party is complying with its obligations.1 To address a potential
point of confusion, this same term is also used by computer scientists to
describe the process of analyzing whether software behaves as expected. In
this report, verification is used strictly in the national security sense.

Without verification, international AI arms control lacks teeth. Effective AI
arms control may continue to languish unless practical verification
mechanisms are developed. This report seeks to jumpstart this discussion by
proposing several novel AI verification mechanisms.

* See Appendix A for a discussion of the difficulties that have plagued the development of
effective AI verification techniques.

Center for Security and Emerging Technology | 6

In this report, I define “AI Verification” as:

The processes of determining whether countries’ AI and AI systems
comply with treaty obligations.

I define “AI Verification Mechanisms” as:

The set of mechanisms that ensure regulatory compliance by discouraging
or detecting the illicit use of AI by a system or illicit AI control over a
system.

As mentioned, AI is a broad class of technologies. Regulators cannot expect
a single silver bullet that can eliminate AI threats. Regulations will likely have
to be technology specific, and verification will have to use a range of
overlapping mechanisms. Recognizing the breadth of this topic and the
unwieldy task of addressing all possible regulatory outcomes, this report
strives not to answer all questions and solve every problem, but to get the
process started.

For the sake of brevity, this report specifically addresses the subcase of
verifying whether an AI exists in a system or subsystem and if so, what
functions that AI could command. I focus on mechanical systems, such as
military drones, as the target of regulation and verification mechanisms. I refer
to these mechanical systems as simply “systems” or “AI systems,” as
appropriate, throughout. These choices reflect the emphasis of a wide range
of regulatory proposals and the policy goals of many organizations lobbying
for AI arms control. These include regulations mandating a human remains in
the loop for use of force decisions, bans on certain systems that should not be
AI controlled, and other regulatory proposals that seek to limit what can use
AI and what AI can do. In sum, this report concentrates on verification
mechanisms that support many of the most popular AI arms control policy
goals.

Naturally, there are many other routes that can be taken to regulate AI
systems. Other possible options include safety and control demonstrations,
rules regulating thoroughness of testing, and the ubiquitous implementation of
certain norms. These and other options are beyond the scope of this report
but should be considered further by interested policymakers and researchers.

This report is intended for those policymakers and national security leaders
who oversee AI systems (and systems that may one day become AI systems)
or negotiate international policy to control their use. It is important to highlight
that the mechanisms contained within this report represent a regulatory

Center for Security and Emerging Technology | 7

starting point. Verification is technically complex, detailed, and politically
difficult. Each mechanism should be passed to engineers for further research
and to determine how it can be implemented in current or future state systems.
This report is a list of possibilities, not answers. Policymakers must lean on
their engineers and diplomats to rework and build on these ideas as needed
to fit technical and political reality.

A Note on Spoofing

Many verification mechanisms could be subject to spoofing. In the context of
AI verification, spoofing can be thought of as any method that an actor may
use to deceive regulators and pursue illicit AI activities. It should be assumed
that if an actor has the sufficient will and resources to cheat, they could
develop spoofing methods to circumvent verification. This does not mean
verification is fruitless, merely imperfect. Former Deputy Secretary of Defense
Paul Nitze summarized these realities by stating the goal of effective
verification is to make sure that:

[I]f the other side moves beyond the limits of the Treaty in any militarily
significant way, we would be able to detect such violation in time to
respond effectively and thereby deny the other side the benefit of the
violation.2

A practical verification mechanism does not necessarily render spoofing
impossible but seeks to catch spoofing in time to act. That said, this stated
goal comes with the asterisk that even methods failing to guarantee this basic
requirement can help. A second goal of verification is discouragement. If a
verification mechanism instills a potential evader with a lack of “certainty
about the likelihood of discovery,” it can still reduce harm.3

This report is written with these goals in mind. Using these mechanisms, actors
can better discourage and detect non-compliant activity, increase the cost of
spoofing, and build trust in relevant regulations.

Verification Inspection Mechanisms

A common tool in pre-existing arms control verification mechanisms is third-
party system inspections to verify compliance with regulation. This first set of
mechanisms are intended to support inspections as a tool for AI verification.

Center for Security and Emerging Technology | 8

Verification Zones and Quarantine Zones

Fundamental to inspections is the ability of third-party inspectors to quickly
review a system and target the components that may make it non-compliant.
As stated in the introduction, the goal of our verification mechanisms is to
demonstrate whether a target system contains AI, and if so, whether certain
critical functions of that system can be AI-controlled. This report defines a
“critical function” loosely as those functions that regulators believe humans,
rather than AI, should control. An example of such a function is the decision
over the use of force, which many believe on ethical grounds should be
reserved for humans.

Unfortunately, conducting third-party inspections on military and national
security systems is often not politically or technically easy and is often
dismissed as too difficult to be worthwhile.4 Several factors complicate
matters, including:

• Complexity: The high complexity of AI algorithms, and the lengthy
code baked into mechanical systems in general, often renders system
code difficult to decipher or even unintelligible to humans. Complexity
poses a challenge to inspections, a core element of many verification
regimes; if inspectors cannot understand the technology they are
inspecting, they cannot verify compliance with the regulations they
seek to enforce. For AI systems, this complexity is often rooted in the
machine learning process, a process by which AI writes and/or
adjusts its own algorithms. AI-written code emphasizes functionality,
not understanding, creating software not even the most talented
engineers, let alone inspectors, can decipher.

• Invisibility: AI algorithms run invisibly, leaving no obvious visible
markers. Even the physical technologies that underpin AI are opaque.
There is no standard set of inputs that “create AI.” Each AI system is
the unique result of a concert of sensors, communications links,
semiconductors, and other technologies. This invisibility makes it
difficult to determine whether an AI or a human controls a system or a
given function. Further, invisibility poses challenges to the detection of
the use and production of AI, complicating efforts to find proof of AI
control.

• Secrecy: “AI Competition” creates an imperative for states,
corporations, and other actors to tightly guard AI algorithms to ensure
their advantage.5 The result has been intense secrecy and a strong
disincentive for actors to openly identify which systems are AI systems,
let alone expose their inner workings to verification inspectors.

Center for Security and Emerging Technology | 9

The guiding paradigm of AI verification and inspections has traditionally
assumed all systems should be treated and inspected as monoliths. This view
is the root of many of the above challenges and has led many experts to
contend that AI verification requires full access to a system’s software to
establish the degree of AI control over it or its functions.6 Under this
assumption, to concretely establish whether a lethal autonomous drone, for
instance, allows AI to control the use of force, an inspector would require full
access to all software and components contained within. Without full access,
the inspector could never be certain if an uninspected part of a system hides
an AI program that surreptitiously controls this critical function. Light must be
shed on all code to know for certain the system is regulatorily compliant. This
view makes inspection an all or nothing task. The noted secrecy demands of
national security and proprietary information, however, make full system
access politically unlikely. Even if full access is granted, a system-wide
inspection would be complex and unwieldy, especially if inspectors must
examine long and often indecipherable algorithms. Working under this
monolithic systems paradigm, verification does indeed seem impossible.

Thankfully, mechanical systems are not monoliths. The term “system” is no
mistake. In reality, any mechanical system is not a monolith but a series of
overlapping “subsystems” that usually coordinate under the orchestration of
an operating system.7 Subsystems may include sensors, interfaces,
communications, navigation, targeting, and firing, among others. Following
this pattern of subdivision, each subsystem often uses its own algorithm(s);
some use AI algorithms and others conventional algorithms. As such, a given
system can contain no AI, one AI, or many AIs. When tasks are carried out, it
is often the subsystems, and their controlling algorithms, that actually
implement the overall system’s tasks. The operating system merely acts as the
system director, allocating resources, easing collaboration, and ensuring
smooth operation.

It is unlikely that state actors will consent to inspections of a system’s operating
system, as it is the centerpiece of any computing system and its design is
usually highly secretive, especially in security critical national security systems.
The easiest path forward appears to be accepting the operating system as a
“black box.” That said, inspections still require a window into the overall
system, a window that certain subsystems can provide.

The recommendation of this report is to narrow inspection scope to only
subsystems of interest to policy goals. This reduces the unwieldy complexity of
inspections, balances the need for a certain level of system secrecy, and
makes system inspections more palatable overall.

Center for Security and Emerging Technology | 10

Box 1: Apple iPhone Subsystems

Apple iPhones include both conventional subsystems, such as the internet browser,
and AI subsystems, such as Siri. While an iPhone contains an AI, Siri, it is just one
application that works in concert with other applications to deliver the various
functions and services expected from an iPhone. The iPhone’s operating system
takes on executive coordination functions, coordinating, triggering, and providing
resources for the overlapping subsystems to make sure they work in concert. In sum,
the iPhone itself is not an AI.

One can imagine Apple would be much more willing to allow inspectors to view
the code for a rudimentary subsystem such as its flashlight application, or any one
of its applications for that matter, rather than wholesale access to all of an iPhone’s
code or its operating system.

To formalize this mechanism, subsystems should be divided into one of two
categories, “quarantine zones” and transparent “verification zones,” defined
as:

Quarantine zones: Subsystems that may contain the operating system,
sensitive software, and other system functions intentionally obfuscated due to
high secrecy demands. The inner workings of these zones should not matter
for verification. Inspectors and policymakers should assume by default that AI
exists within or controls these quarantine zones (even if it does not) until
proven otherwise.

Verification zones: These are subsystems that are intentionally made
transparent. These zones can be physically or logically demarcated within the
system through software, hardware, or both. These zones would allow
inspectors access to the code or hardware of subsystems to determine from
where they receive instructions. If controlling instructions can come from a
quarantine zone, it should be assumed the functions in this zone could be AI-
controlled. If not, this suggests the subsystem(s) within cannot be controlled by
an AI outside of a verification zone. Verification zones should surround
subsystems involved in functions that should not be AI controlled or should not
contain AI. To verify a human remains in the loop for use of force decisions,
for instance, the weapons deployment system should be in a verification zone
so an inspector can verify it is not AI controlled and can trace its instructions
to a human source.

When curtailing AI command and control, AI itself is often not the problem
but rather the ability of AI to communicate with and control critical

Center for Security and Emerging Technology | 11

subsystems. If these critical subsystems are made transparent, inspectors
could analyze their code and the source of their commands to determine
whether they could come from an AI algorithm. If instructions flow from a
quarantine zone, an AI could be sending those instructions, and the
subsystem cannot be verifiably AI-free. If the instructions flow only from a
transparent source in a verification zone, then inspectors can verify the
subsystems within are AI-free or verify what functions are AI controlled within
the zone. This mechanism allows for verification that skirts the need to dig
through the wholesale code of a system. Through this limited scope,
verification by inspection likely grows more politically feasible and practically
manageable, while remaining effective.

Verification Checkpoints

Separation of these zones can be implemented either physically or digitally.
Physically, zones can be isolated from one another if they do not have the
physical means to communicate. This is known as air-gapping.8 If the
weapons system of a drone, for instance, is not wired to a subsystem
containing illicit AI, the AI could not control a subsystem or its critical
functions.

Digitally, software could be designed to carefully control the flow of
instructions and isolate certain software elements from others. I call these
verification checkpoints. A verification checkpoint is an interface that stands
between a given verification zone and all other subsystems. This checkpoint
acts to sieve instructions. Using authentication and carefully managed intra-
system communications pipelines, a checkpoint could limit the instructions a
verification zone can accept and from where it can accept instructions. If a
quarantine zone subsystem is not authorized to communicate with a
verification zone subsystem, an instruction checkpoint will halt those
instructions. This protects the verification zone from AI within that quarantine
zone that may be issuing those instructions. More critically, it demonstrates to
an inspector that the AI in the quarantine zone cannot control functions in the
verification zone.

Forcing instructions through a checkpoint creates an intentional bottleneck. If
all instructions flow through one point, this produces a centralized and
convenient node to target all regulation and inspections. A checkpoint’s code
could be relatively concise and likely technically simple enough for an
inspector to easily understand. It is possible that these bottlenecks may
negatively impact performance, a tradeoff made in favor of enhanced
transparency. Policymakers must consider whether this trade-off is worth it.

Center for Security and Emerging Technology | 12

As for the specific design of these checkpoints, there is a range of possibilities
available. Such checkpoints could be designed to only allow instructions to
flow into a verification zone from a select human source. Alternatively,
checkpoints could be designed to give varying degrees of control to different
sources, perhaps allowing for a benign AI in a quarantine zone, perhaps a
navigation AI, to send a verification zone targeting coordinates while
continuing to halt the quarantine zone from sending certain critical
instructions, such as an instruction to “fire.” I call these mixed control
checkpoints “centaur checkpoints.”

Verification checkpoints reduce potentially unwieldy system inspections to
targeted reviews that determine if the checkpoint could allow a quarantine
zone, and therefore an AI, to send instructions to a regulated subsystem in a
verification zone. By examining checkpoints, inspectors can identify the
source of commands to verify if they come from a quarantine zone. If
commands can be traced to a human-controlled verification zone, it can be
determined that the subsystems beyond the checkpoint are AI-free.

Policy Refinements and Assumptions

Ideally, the quarantine/verification zone would be packaged with some
additional policies. If possible, state actors would agree upon standard
verification zones in their systems to open to inspectors. State actors must
choose and define these zones carefully. To ensure an AI does not have
control over critical decisions, states must agree what defines the subsystem
that implements those decisions so that it can be clear what is regulated. In
general, focus must be placed on subsystems of interest to regulation and
those that contain enough information to verify the system will act according
to policy goals. To build trust and respect secrecy demands, less is more.
Policymakers should work with engineers to determine what quantity of
subsystems would need to be verification zones in order to confidently verify
a system.

State actors may also wish to negotiate additional policies to ease inspection.
Potential examples could include standard subsystem labels and physical
markings to clarify component function and layout, designing subsystems to
be easily accessed by an inspector, or mandating subsystem code be clearly
described in code comments. This is by no means an exhaustive list; state
actors should consider these and other policies that may help to ease
inspections.

Center for Security and Emerging Technology | 13

This concept also rests on several assumptions about state actor behavior. It
can be assumed that if a state actor knows a given piece of hardware or
software is in a verification zone, the state actor will intentionally exclude top-
secret technology from that zone’s design. Note that opening these zones to
inspection does not eliminate the possibility of technical advantage, but
merely redirects all actors to finding their technical edge in other non-
transparent subsystems. If engineers design systems with this in mind, a state
actor should have few reservations about opening these zones to inspection.
As addressed below in the “challenges” section, this may mean substantial
system changes are required.

Box 2: Inspecting Military Drones through Verification Zones

Say an inspector wants to examine a military drone to verify it cannot use force
without a human in the loop. To verify this, actors could agree on select verification
zones in this system and open those zones to inspections. To do so, the inspector
would require access to only those subsystems relating to the use of force,
specifically the weapon deployment subsystem. This subsystem would therefore be
a verification zone. Many subsystems, such as the drone’s fuel management
system, are likely unnecessary to this task and would be declared as uninspectable
quarantine zones.

To inspect this verification zone, the inspector may examine the weapons
deployment subsystems and determine if it contains AI. Further, the inspector must
verify which other subsystems may control weapons deployment and whether those
systems are AI-controlled. To do so, the inspector can trace from where inputs into
the verification zone flow:

• If instructions are fed to the weapons system from an uninspectable
quarantine zone, a zone that could contain AI, the inspector cannot verify
with certainty that AI does not control the use of force.

• If instructions flow from a transparent verification zone that does not contain
AI, then the inspector can verify that AI does not control the use of force.

This method allows the inspector to verify compliance while balancing the need for
secrecy and reducing the scope of inspection.

Challenges

As mentioned, it is highly likely that these mechanisms cannot be easily
implemented using current system designs. Many systems, while modular to
an extent, are still highly interconnected, and it may be that certain

Center for Security and Emerging Technology | 14

subsystems cannot be easily subdivided from the rest to form these verification
zones. Further, current systems aren’t designed with checkpoints in mind, and
therefore this could hinder efficiency if instructions must be funneled through
this intentional bottleneck. While a hindrance, this problem is not something
that should halt research and policy negotiation. Historically, it has taken
many parties to arms control treaties significant time and research to
implement the changes required. For example, the United States is still
working through the substantial changes required by the Chemical Weapons
Convention it signed in 1997 with a goal of completing disarmament by
2023.9 This demonstrates that just because arms control verification requires
heavy lifting and time does not render it impossible, nor does it mean steps
should not be taken. Verification and arms control problems are technical and
require technical changes. Therefore, it is likely these changes must be
gradually implemented over time as new national security and military
systems are developed.

Cybersecurity is another challenge. With greater transparency comes greater
cyber risk. When considering this mechanism, state actors must consider the
security of their systems and the benefits they may receive by sacrificing some
system security. Arms control usually has some cost, and it could be that cost
is cybersecurity. Policymakers must note, however, that often security in one
domain can be improved through a small sacrifice of security in another.
Weigh this balance carefully.

A final challenge is one of state actor trust and motivation. Any arms control
scheme that seeks to balance secrecy and transparency will encounter
international resistance. Change is hard, especially when it costs time,
money, and potential military advantage. States must be motivated to buy
into the concept and must trust the technical decisions made throughout the
process. Without motivation and trust, negotiations will fail.

To surmount these challenges, policymakers should work with engineers to
research which checkpoint designs and system architectures will best balance
policy goals against any detriments to cybersecurity and processing speeds.
To improve trust and build international buy-in, policymakers should
collaborate on this research with international partners. Doing so will ensure
designs reflect the state of the art, build trust in the science behind any
proposed changes, and encourage buy-in from the outset of the development
process.

Center for Security and Emerging Technology | 15

Hardware Inspections

If state actors wish to avoid software inspections and verify based only on
hardware, they could do so by examining whether a given system, or
subsystem, contains an AI chip. This mechanism can be implemented using
the verification/quarantine zone model, restricting inspectors to only
inspecting the hardware of subsystems relevant to their purpose. If a given
subsystem is not powered locally by an AI chip and verifiably cordoned off
from any external AI, it can be assumed the subsystem and its functions are
not AI controlled. If the goal is to simply determine whether a system writ-
large is AI-free, this mechanism is ideal as its somewhat less intrusive nature
than software inspections* may make it more politically feasible to inspect an
entire system without risking the exposure of most of the system’s design
secrets.

The mix of chips that inspectors would look for in systems is diverse, ranging
from general purpose Central Processing Units (CPUs) to so-called AI chips,
which include Graphics Processing Units (GPUs), highly specialized
Application-Specific Integrated Circuits (ASICs), and other AI optimizing
processors and memory units.10 In the world of AI, these various chips fall into
two buckets: those used for AI training, when the AI is in development, and
those used during inference, when the AI is in use. For AI system verification
purposes, it is the inference chips that matter most as those are the chips that
power AI algorithms when AI systems are deployed.

At present and into at least the short term, it seems likely these chips will be
required for AI system inference and therefore a clear indicator of the use of
AI by that system. McKinsey estimates that within five years, 70 percent of the
chips in AI systems will be ASICS, a specific type of AI chip exclusively used
by AI applications, replacing the CPU as the AI processor of choice.11 The
takeaway is that within five years, most AI embedded systems could clearly
be identified by their chipset.

The reason for this shift, in brief, is that AI chips appear to offer many clear
advantages. The use of these chips for AI processing and specifically AI

* It is assumed that because the complexity and sensitive design details of hardware is often
invisible to the naked eye an inspector could not easily steal or reveal substantial design
secrets unless they had the time and resources to analyze the components in depth.
Inspecting software, on the other hand, requires an inspector to read through the system’s
code, revealing all the design secrets contained within. It is likely certain secrecy risks,
however, are not accounted for in this report. Policymakers should work with engineers to
verify what secrets may be put at risk through a hardware inspection.

Center for Security and Emerging Technology | 16

inference largely derives from the special purpose features they provide for
AI systems. These include (but are not limited to):

1. Greater parallelism. To analyze data efficiently, AI algorithms often
must take advantage of greater parallelism than traditional CPUs can
offer. These algorithms need to subdivide their complex input data
and analytic models into smaller pieces so that analysis can be done
in parallel, rather than sequentially. This massively speeds up
operations and allows for quicker analysis.

2. Lower precision numbers: The operations AI algorithms perform
often require fewer values after the decimal point in the numbers
being calculated. These numbers are said to have “lower precision.”
If a chip lowers the precision of the numbers being calculated, this
increases the speed of each calculation, unlocking improved
performance.12

3. Faster memory access: AI has significant memory requirements. Fast
memory allows an AI to think and act faster. AI chips facilitate this,
often physically shortening the distance between processing and
memory components to increase the speed of memory recall and,
therefore, the speed of AI “thinking.”13

4. Optimization for AI specific calculations: AI computations often
involve a high volume of matrix multiplication. AI chips often optimize
for this through such features as many parallel Multiply-Accumulate
Circuits, which are special circuits that speed up this type of
multiplication.14

These features illustrate how AI chips can improve function in AI applications
and why they may become an essential part of national security AI systems.

As alluded to, inspections to verify the existence of AI in a system could be
simple. All that is required is a physical examination of a system or subsystem
to check if it contains AI chips. Verifying AI control over specific critical
functions, such as an AI’s ability to use force, is also potentially possible from
this “look and see” method. If a critical subsystem, such as the weapons
deployment system, does not include an AI chip and is verifiably cordoned
off or air-gapped from other subsystems, it is likely not AI controlled and
therefore compliant.

While potentially effective, this mechanism is blunt. It is likely best used as a
“first pass” inspection to determine whether a system requires greater scrutiny.
Additional, more invasive analysis could then follow.

Center for Security and Emerging Technology | 17

Challenges

This mechanism does not guarantee systems are entirely AI-free, as traditional
CPUs can still run AI algorithms, albeit at an often slower pace. Furthermore,
the utility of this mechanism could vary widely depending on system type. For
lightweight applications, such as small drones, CPUs may be enough, and
policymakers should account for this in their inspection policies. In this case,
seeing that a system does not contain an AI chip is not enough for verification.

However, for heavyweight applications, such as large drones and
autonomous vehicles, the real time requirements of safety and time-critical
functions require immensely fast processing to achieve real time action and
reaction. This may require the faster AI-specific inference chips.15 This speed
imperative is even more crucial to military systems where the inability to react
in a timely manner could lead to strategic failure or dangerous lag. It can be
assumed that if a military deploys a multimillion-dollar autonomous system, it
will use the chipset best equipped to reap the value of that investment. If
current trends hold, this means those systems will use AI chips. In the end,
capability is what matters. If a CPU-driven autonomous system is not capable
of the processing speeds needed to be a true threat, it may be of little concern
to regulators and useless to its owners. Do note that current trends may
change. Refinements in CPUs and efficiency gains from new AI design
techniques could allow systems to run on CPUs. If this mechanism is used,
policymakers must ensure implementation keeps pace with technology
change.

Another challenge is distinguishability. This mechanism depends on AI chips
exhibiting some quality that allows an inspector to determine they are AI
chips. Given the breadth of AI-specific chips, this will likely require a range of
qualities that inspectors can use to determine the classification of a given chip.
As such, policymakers should work with engineers to delineate what qualities
can be used and ensure this process conforms to chip designs.

Center for Security and Emerging Technology | 18

Sustained Verification

A key challenge to verifying systems remain compliant with regulations post
inspection is the ease with which system code can be altered. The inspection
mechanisms above are certainly essential, especially for deterring non-
complaint activity. However, inspections only offer certainty in the very short
term. Even if a system is found to be compliant, its software could be changed
immediately after to embed it with AI or give an AI control of critical functions.
Effective inspections and regulatory enforcement, therefore, require
mechanisms to detect and deter such alterations. To craft a strong verification
regime, policymakers should look to what I call “sustained verification
mechanisms,” which help affirm previously inspected systems remain
compliant long term.

The following mechanisms are tailored to this purpose.

Cryptographic Hashing

One mechanism that can be used to protect system code from manipulation is
anti-tamper (AT) software techniques. According to the Department of
Defense, these methods render efforts to alter or exploit data and code “so
time consuming, expensive, and difficult that even if the attempts were to
become successful, the AT protected technology will have been updated and
replaced by the next generation version.”16 For AI verification, anti-tamper
software ideally can even “detect if [a] program has been altered,” and
potentially rendered non-compliant.17 These methods promise to deter and
detect rather than outright stop tampering. Therefore, policymakers should
note that software tampering is still possible, despite the best efforts of anti-
tamper technology.

Anti-tamper methods are diverse, often application-specific, and continually
evolving. As such, this report does not address many existing methods, such
as watermarking, which makes code difficult to remove without damaging the
system or making changes, or encryption wrappers, which encrypt system
code and only decrypt it when the system is in use.18 For the sake of
illustration, I discuss two promising anti-tamper techniques—cryptographic
hashing in this section and algorithm obfuscation in the next—and how they
can be used for sustained AI verification. Interested policymakers and
researchers are encouraged to research and consider other AT methods that
could be appropriated for verification.

Center for Security and Emerging Technology | 19

Cryptographic hashing is a tool that could support verification by producing
for inspectors a privacy-preserving “record” of system code. This record can
act as a tamper detection device, allowing tampering to be signaled upon
subsequent inspections of the same system.

Cryptographic hashing uses a mathematical function, known as a
“cryptographic hash function,” which takes in any type of data—including
text, audio, and computer code—then scrambles, condenses, and transforms
that data into a resulting “hash,” a seemingly random sequence of characters
of a certain length.19 For example, when the 39,808-word text of the Book of
Genesis, King James Version, is fed through the SHA-256 hash function (a
commonly used hash function), the entire text is transformed into:
“675d773189394dcd4cc92d1b489f1e04cca2b4e734dccda7d7e06d0
aed181db8.”20 This resulting hash is an unintelligible scramble, dramatically
condensed and altered from the text.

This data transformation property is only the tip of the cryptographic hashing
iceberg. Importantly, for a hash function to be a cryptographic hash function
and useful for verification, it must have five key characteristics:

1. Consistency: Input data will always produce the same hash when run
through the same cryptographic hash function.

2. Speed: The hash function is fast, producing output in a reasonable
amount of time.

3. Cannot be reverse-engineered: The resulting hash cannot be easily
transformed back into the original input data that it represents.

4. Cannot be easily duplicated: Practically speaking, no two data
inputs should produce the same hash.

5. The Avalanche Effect: Only a small alteration to the original input
data will yield a dramatic “avalanche” of changes to the resulting
hash. Small changes yield substantial differences.

For sustained verification purposes these combined properties create a very
powerful tool. Once an inspection is completed, an inspector can hash the
entire code of a system, or even just the code of a verification zone, and store
that hash as a “record” of what that code should be. To an inspector, the
hash is the code. If inspectors have records of expected system code, this then
allows them to identify and track system changes. If the same system’s code
were to be hashed again in the future, the result should match the hash the
inspector has on file. If it does not, this signals alterations have been made.
Crucially, this tool is privacy preserving. Because a given hash cannot be

Center for Security and Emerging Technology | 20

reverse-engineered to produce the code it represents, an inspector can save
a record without putting state secrets at risk.

It is notable that hashes do not need to be computed in person. This opens up
the opportunity to use this tool not only for sustained verification, but
continuous verification. To implement, a given system could be fitted with a
theoretical “hashing device” that occasionally hashes the system’s code and
broadcasts that hash to an observer. This would give the observer a window
into the code’s fidelity over time and deter actors from making changes.
Naturally, this concept would be somewhat invasive but would create a
powerful verification tool.

Challenges

It is possible that, over time, certain cryptographic hashing functions may be
broken, thereby compromising the integrity of this system. In the past, even
hashing algorithms supported by reputable organizations such as the
National Institute for Standards and Technology have contained
compromising vulnerabilities.21 If a significant vulnerability is found, code
could theoretically be altered without signaling tampering. Therefore, an
actor could alter their system code in such a way that it produces the same
hash as the original and evade detection. This could facilitate cheating.

This scenario, however, is immensely improbable. The mathematics of the best
hashing algorithms are such that even if an actor were to try and fool the
function, the process would take so long (perhaps decades) that the effort is
not worthwhile.22 The improbability of cracking existing top-tier hash functions
is illustrated best by Bitcoin, the mechanics of which are built on
cryptographic hashing. There exists an unparalleled monetary incentive to
crack Bitcoin’s hash function, yet the combined efforts of the world’s hackers
have failed thus far. Hashing is that robust. Still, if this method were
implemented, policymakers should consider the probability of vulnerabilities
and prepare appropriate contingencies.

Algorithm Obfuscation

The second anti-tamper technique I will discuss for the sake of illustration is
algorithm obfuscation.

Algorithm obfuscation is a method that “make[s] a computer program
‘unintelligible’ while preserving its functionality.”23 Obfuscation is achieved by
running code through an obfuscation algorithm, which intentionally scrambles
the code to disguise its meaning. The resulting scrambled code is an

Center for Security and Emerging Technology | 21

unintelligible “black box,” which can function exactly like the original code
but cannot be read by engineers and, ideally, cannot be reverse-engineered
to discover the unscrambled version. The difference between obfuscation and
hashing is that hashing would produce a numeric representation of the code
(which cannot be computed), while obfuscation produces new, unintelligible
code (which can be computed) with the exact functions of the original code.

For verification, obfuscated code would act in a similar manner to
cryptographically hashed code. If code is truly obfuscated, outside parties
and inspectors could potentially view a system’s code, and even record it,
without compromising its specific implementation. Inspectors could keep a
record of the entire system code, or just the code of a verification zone, and
therefore a record of how that system should be configured. In subsequent
inspections, inspectors could run a 1-to-1 comparison between past and
present obfuscated code to quickly spot tampering. Unlike hashing, however,
obfuscation allows inspectors to see code, not a hash, potentially eliminating
the problem of cryptographic hash collisions.

Challenges

Code obfuscation is still a developing cybersecurity frontier, and much
research is needed to produce robust obfuscation algorithms. According to
the Defense Advanced Research Projects Agency (DARPA), the best current
techniques only require about a day’s worth of effort to crack.24 That said, it is
possible that adequate technology has been or will be developed. DARPA is
currently developing what it calls “Safeware,” obfuscated software that
cannot be reverse-engineered and is probably secure.25 While this project is
a moonshot, if it, or any other related research, is successful and made
internationally available, state actors could use algorithm obfuscation to
ensure these systems are secure, tamper-proof, and help build trust in
regulations.

Even if robust obfuscation techniques are indeed developed, it is important to
note that this method does reveal code and, with it, certain elements of code
structure and function. Further, because this is usable code, it could be used to
determine what functions a given system has, even if it cannot be determined
how the system performs those functions. Additionally, one could still find
vulnerabilities in obfuscated code even if the overall purpose of a given
algorithm remains unclear. All in all, in its current state obfuscated code is
likely a less secure method than cryptographic hashing. However, it still
represents one potential tool in the anti-tamper toolbox that can be further
refined through consultation with engineers.

Center for Security and Emerging Technology | 22

Van Eck Radiation Analysis

Van Eck radiation analysis is another sustained verification tool that can be
used to continuously monitor system function and ensure it matches what was
found during a system inspection. Van Eck radiation is the electromagnetic
radiation computers and unshielded electronic devices emit when they
process code. If intercepted, this radiation can be deconstructed to reveal a
system’s functions and even the code it processes.26 Such potent information
can be used to verify the consistency of the system’s code in the long term,
creating a powerful verification tool.

As with most verification tools, however, Van Eck radiation is not a silver
bullet. While computer code can indeed be intercepted by analyzing Van
Eck radiation, this code will be highly complex and often garbled. Computers
are excellent multi-taskers and often process multiple algorithms in tandem,
making it difficult to piece together coherent algorithms from a tangle of
intercepted instructions. This quality rules out any ability to simply identify
algorithms using Van Eck radiation. For this, Van Eck radiation analysis is far
too blunt an instrument.

To further complicate matters, the instructions Van Eck radiation would reveal
are written in machine code, the strings of 1s and 0s that form the operating
instructions for computers. Machine code instructions are often processor-
specific, meaning that if an analyst is unfamiliar with the processor running
this machine code, they will not know how to correctly interpret the
intercepted 1s and 0s. In sum, if the Van Eck radiation of a complex system
such as a military drone were monitored, it is unlikely an observer could piece
together what algorithms the system is running, let alone prove whether it
contains AI or gives AI control over certain functions.

At first glance, these two qualities may seem to rule out Van Eck radiation
analysis as an effective verification tool. In reality, however, it is precisely Van
Eck monitoring’s weaknesses that make this highly practical for AI verification.
Van Eck radiation leaks just enough information about system code, without
revealing the complex, tightly guarded secrets of the system’s algorithms.

To use Van Eck radiation to sustain verification post-inspection, a system’s
owner would need to consent to the installation of a theoretical “Van Eck
radiation sensor” onto the system in such a way that it can detect the
unshielded Van Eck emissions of the device. This sensor would need to be
trained to recognize the typical radiation patterns given off by this system,
creating a baseline system radiation profile. This profile would consist of a

Center for Security and Emerging Technology | 23

“dictionary” of expected radiation patterns emitted when the system uses its
existing code. Each time the sensor picks up a Van Eck emission, it would
consult this dictionary to affirm that the emission matches the patterns
expected of the system. If it detects a foreign pattern, be it from injected
malware or intentional design changes by its owner, this indicates changes
have been made to system code. The Van Eck radiation would then signal to
inspectors that the system may no longer be compliant.

To illustrate, if an inspector verifies a drone as AI-free, the inspector could
then use a Van Eck monitoring device to measure the radiation patterns the
drone’s code emits when its algorithms are run. If the drone’s radiation
patterns later change, this would be detected. Inspectors could then re-
inspect the drone, determine the cause of the deviation, and establish whether
the system remains compliant.

The unique advantage of Van Eck radiation analysis over other sustained
verification tools is its potential for minimally invasive monitoring. A theoretical
Van Eck sensor would not need access to a system’s code to verify that code
has been altered. Detecting system changes needn’t come at the expense of
code secrecy. System monitoring can be done mostly externally (assuming
the sensor can be installed without a radiation shield in its way) without
reading a single line of code. This protects design secrets while guarding
against illicit activity.

This mechanism is scientifically grounded. Recent DARPA-funded research
tested a nearly identical concept, albeit with the goal of detecting malware
rather than changes to AI control of a system. The research found that illicitly
injected malware could be detected in systems more than 99 percent of the
time.27 If this same process is appropriated for AI detection, systems could be
continuously monitored and non-compliant activity detected with certainty
beyond a reasonable doubt.

Challenges

Van Eck radiation’s use in intelligence collection is noted for its difficulty.
Challenges certainly remain, many of which must be tackled by engineers to
determine the effectiveness of this method and the quality of information that
can be collected. One such challenge is the known changes to emissions that
result from integrated circuit wear and tear over time.28 Such changes would
need to be studied, quantified, and their impact accounted for in any Van Eck
radiation analysis system. Another challenge is the potential impact of
different environmental conditions on Van Eck emissions. These may include

Center for Security and Emerging Technology | 24

the impact of power lines, radar jamming equipment, and other stray
electromagnetic fields. These influences would need to be accounted for,
otherwise a system could signal changes every time it enters a foreign
operating environment.

The applicability of this measurement specifically to machine learning and
deep learning models must also be studied in depth. One such challenge may
be accounting for emissions changes resulting from the dynamic alterations a
deep learning model may make on itself. Another could be accounting for a
more diverse range of emissions created by the varied data these systems
process.

As mentioned, AI verification is a technical problem that needs technical
solutions. Van Eck radiation analysis is a method that must be developed in
consultation with engineers and specialists to ensure it provides robust results
and accounts for a variety of implementation scenarios and challenges. Such
challenges to verification development are not unheard of. Thankfully, in
verification, half measures are acceptable. This mechanism does not need the
precise accuracy to concretely determine whether a system was manipulated
to be an effective tool. If it can detect potential manipulation with a certain
level of uncertainty, this can still signal to observers that follow-up action may
be required.

Center for Security and Emerging Technology | 25

Conclusion

AI verification is no easy task. The mechanisms discussed in this report offer
potential solutions to some of the many problems that face AI systems. More
work is required, however. If the goal of policymakers is to regulate AI, there
are actions that can be taken today. Specifically:

1. Verification Zone and Hardware Verification Architecture
Research: Experts must develop and research system architecture that
can be used to implement the verification zone and hardware
verification concepts. Research should specifically identify what
architectural options exist to cordon off and checkpoint the
verification zones, the impact of these checkpoints on system
performance and security, the information that can be gained or lost
using these inspection mechanisms, and the effort it would take to
implement these architectures in future and current state systems.

2. Van Eck Radiation Capture and Analysis Research: Further
research is needed to determine the quality of information that can be
captured from the Van Eck radiation given off by systems during
processing and the degree of certainty of system consistency that
information provides. Additional research should focus on the
feasibility of a “Van Eck radiation sensor” to be used for continuous
verification.

3. Coordination with International Partners: To build trust, researching,
developing, and implementing these concepts cannot be done in a
vacuum. Arms control requires international support, and trust requires
transparency in the science. The United States should explore
potential research partners to build support in these ideas, verify
research, and foster trust in potential arms control agreements that
may follow.

By taking these steps and working with scientists, policymakers can move the
AI arms control conversation forward. AI is at a fulcrum point, and
international security depends on ensuring AI provides a net benefit.
Policymakers must take it upon themselves to explore these ideas and build
on this research so that robust and verifiable standards, norms, and
regulations can be developed to constrain the misuse of AI systems and
preserve future security.

Center for Security and Emerging Technology | 26

Author

Matthew Mittelsteadt is an Artificial Intelligence Policy Fellow for the Institute
for Security Policy and Law (SPL) and a guest lecturer for the Syracuse
University College of Law.

Acknowledgments

I want to extend special thanks to James E. Baker, Laurie N. Hobart, Igor
Mikolic-Torreira, Eric Landree, Matthew Mahoney, Dewey Murdick, Alex
Friedland, and Miles Brundage for their invaluable input, numerous read-
throughs, and time. This wouldn’t have been possible without your effort. An
extra special thanks to my ever-inspiring grandma, Charlotte Gronseth, who
proved that even an octogenarian can understand and offer useful critique on
artificial intelligence research.

© 2021 by the Center for Security and Emerging Technology. This work is
licensed under a Creative Commons Attribution-Non Commercial 4.0
International License.

To view a copy of this license, visit
https://creativecommons.org/licenses/by-nc/4.0/.

CSET Product ID #: 20190020

Document Identifier: doi: 10.51593/20190020

Center for Security and Emerging Technology | 27

Endnotes

1 Ola Dahlman, “Verification: To Detect, to Deter and to Build Confidence,” United Nations
Institute for Disarmament Research, Arms Control Verification (Geneva: UN, October 2010),
3-13, https://www.unidir.org/files/publications/pdfs/arms-control-verification-en-
320.pdf.
2 “The Chemical Weapons Convention: Report Together with Majority and Minority Views (to
Accompany Treaty Doc. 103-21).” United States Congress, Senate Committee on Foreign
Relations: U.S. Government Printing Office, 1996.
3 United Nations Institute for Disarmament Research, Arms Control Verification.
4 Mark Gubrud, “Can an Autonomous Weapons Ban Be Verified?” International Committee
for Robot Arms Control, April 14, 2014, https://www.icrac.net/can-an-autonomous-
weapons-ban-be-verified/.
5 Andrew Imbrie, James Dunham, Rebecca Gelles, and Catherine Aiken, “Mainframes: A
Provisional Analysis of Rhetorical Frames in AI” (Center for Security and Emerging
Technology, August 2020), https://cset.georgetown.edu/wp-content/uploads/CSET-
Mainframes-A-Provisional-Analysis-of-Rhetorical-Frames-in-AI.pdf.
6 Gubrud, “Can an Autonomous Weapons Ban Be Verified?”
7 Terry Fong, “Autonomous Systems: NASA Capability Overview” (National Aeronautics
and Space Administration, August 24, 2018),
https://www.nasa.gov/sites/default/files/atoms/files/nac_tie_aug2018_tfong_tagged.p
df.
8 Kim Zetter, “Hacker Lexicon: What Is an Air Gap?” WIRED, December 8, 2014,
https://www.wired.com/2014/12/hacker-lexicon-air-gap/.
9 “Chemical and Biological Weapons Status at a Glance,” Arms Control Association, April
2020, https://www.armscontrol.org/factsheets/cbwprolif.
10 Saif M. Khan and Alexander Mann, “AI Chips: What They Are and Why They Matter”
(Center for Security and Emerging Technology, April 2020),
https://cset.georgetown.edu/research/ai-chips-what-they-are-and-why-they-matter/.
11 Gaurav Batra, Zach Jacobson, Siddarth Madhav, Andrea Queirolo, and Nick
Santhanam, “Artificial-Intelligence Hardware: New Opportunities for Semiconductor
Companies,” McKinsey and Company, January 2, 2019,
https://www.mckinsey.com/industries/semiconductors/our-insights/artificial-intelligence-
hardware-new-opportunities-for-semiconductor-companies#.
12 J. Welser, J.W. Pitera, and C. Goldberg, “Future Computing Hardware for AI,” 2018 IEEE
International Electron Devices Meeting (IEDM), December 1-5, 2018,
https://doi.org/10.1109/IEDM.2018.8614482.
13 Anirudh VK, “Why ASICs Are Becoming So Widely Popular for AI,” Analytics India
Magazine, July 15, 2019, https://analyticsindiamag.com/why-asics-are-becoming-so-
widely-popular-for-ai/.
14 Khan and Mann, “AI Chips: What They Are and Why They Matter.”
15 Khan and Mann, “AI Chips: What They Are and Why They Matter.”
16 Christopher L. Cain, “Anti-Tamper Technology: Preventing and/or Delaying Exploitation of
Critical Technologies,” Utica College, 2013,
https://www.utica.edu/academic/library/Cain_CL_2013.pdf.

Center for Security and Emerging Technology | 28

17 C.S. Collberg and C. Thomborson, “Watermarking, Tamper-Proofing, and Obfuscation
– Tools for Software Protection,” IEEE Transactions on Software Engineering 28, no. 8
(November 2002): 735-746, https://ieeexplore.ieee.org/document/1027797.
18 Mikhail J. Atallah, Eric D. Bryant, and Martin R. Stytz, “A Survey of Anti-Tamper
Technologies,” CrossTalk: The Journal of Defense Software Engineering (November 2004):
12-16,
http://static1.1.sqspcdn.com/static/f/702523/9292150/1289015004337/200411-
Atallah.pdf?token=n6JBO1DGr6SY5KwDbkykN4ih4wg=.
19 Quynh Dang, Recommendation for Applications Using Approved Hash Algorithms
(Washington, DC: Department of Commerce, August 2012),
https://www.nist.gov/publications/recommendation-applications-using-approved-hash-
algorithms?pub_id=911479.
20 Genesis, King James Version, accessed December 18, 2020,
https://quod.lib.umich.edu/cgi/k/kjv/kjv-idx?type=DIV1&byte=1477; “SHA2 Hash
Generator,” Browserling, accessed July 17, 2020,
https://www.browserling.com/tools/sha2-hash.
21 Information Technology Laboratory, Secure Hash Standard (SHS) (Gaithersburg, MD:
National Institute of Standards and Technology, August 2015), FIPS PUB 180-4,
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf; Liberty York, “What is
Hashing?” Medium (blog), February 22, 2018, https://medium.com/tech-tales/what-is-
hashing-6edba0ebfa67.
22 Nathan Landman, Christopher Williams, Eli Ross, and Jimin Khim “Secure Hash
Algorithms,” Brilliant, accessed February 4, 2020, https://brilliant.org/wiki/secure-
hashing-algorithms/.
23 Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters, “Candidate Indistinguishability Obfuscation and Functional Encryption for All
Circuits,” International Association for Cryptologic Research (IACR), July 21, 2013,
https://eprint.iacr.org/2013/451.pdf.
24 Joshua Baron, “SAFEWARE,” Defense Advanced Research Projects Agency (DARPA),
accessed December 23, 2019, https://www.darpa.mil/program/safeware.
25 Baron, “SAFEWARE.”
26 National Security Agency, “TEMPEST: A Signal Problem,” accessed December 23, 2019,
https://www.nsa.gov/Portals/70/documents/news-features/declassified-
documents/cryptologic-spectrum/tempest.pdf.
27 Haider Adnan Khan, Nader Sehatbakhsh, Luong Ngoc Nguyen, Robert Locke Callan,
Arie Yeredor, Milos Prvulovic, and Alenka Zajic, “IDEA: Intrusion Detection through
Electromagnetic-Signal Analysis for Critical Embedded and Cyber-Physical Systems,” IEEE
Transactions on Dependable and Secure Computing (August 2019): 1–1,
https://doi.org/10.1109/TDSC.2019.2932736.
28 Alexandre Boyer, Sonia Ben Dhia, Binhong Li, Néstor Berbel, and Raul Fernandez-
Garcia, “Experimental Investigations into the Effects of Electrical Stress on Electromagnetic
Emission from Integrated Circuits,” IEEE Transactions on Electromagnetic Compatibility 56,
no. 1 (February 2014): 44-50, https://ieeexplore.ieee.org/document/6563162.

